STUDENT CASE STUDY AWARDS

THIRD PLACE WINNER

Jeff White

Does a Patient-Selected vs. Researcher-Chosen Music Influence Relaxation Massage Therapy Treatments

Spring Year
Table of Contents

Table of Contents ...2

Abstract ...3

Introduction ...4
 Physiology and pathology ..4
 Music as a clinical tool ...5
 Massage as a clinical tool ...8

Methods ...10

Results ..14

Discussion ..16

Conclusion ..18

References ..19

Appendices
 Appendix A: Pre test interviews and assessments ..23
 Appendix B: Researcher-chosen music playlist sample ...30
 Appendix C.: Patient-chosen music playlist sample ...31
Abstract

The objective of this case study is to determine if there is value for a patient to listen to his or her own choice of music in a relaxation massage therapy treatment, rather than listen to researcher-chosen music. This case study follows six general Swedish massage therapy treatments for relaxation of one patient. Over the course of the six treatments, patient-chosen and researcher-chosen music playlists are alternated. Blood pressure, pulse and respiratory rates are measured before and after each treatment as physiological relaxation indicators. All measurement changes are also calculated as an average for comparison between each playlist type. This study found that while treatments did provide a relaxation effect, there was a larger reduction in physiological stress from the treatments in which the patient chose the treatment music. Although the relaxation responses in the patient-selected music category were positive in each assessment method, the respiratory rate and pulse rate were the most notable. This case study presents evidence that patient-chosen music increases the relaxation response and is a valuable addition to a general Swedish massage therapy relaxation treatment. It also invites further research into the inclusion of music as a modality in massage therapy treatments.

Keywords: Massage Therapy, Patient Selected Music, Relaxation

Introduction

The external environment can contribute both positively and negatively to a Massage Therapy (MT) treatment and therefore should be evaluated as a modality if it is to be included in MT treatment. Some external considerations are documented, commonly discussed and put into practice. For example, lighting can be manipulated for the treatment of a headache (Rattray & Ludwig, 2000). Playing music during massage treatments is prevalent and is perceived as an inexpensive and noninvasive external relaxation tool. Yet despite its frequent use, the method of selection and choice of music for MT treatments appears to be overlooked in research.

To understand this modality better, it is relevant to draw on music expertise. Music therapy is not within the scope of practice for a Registered Massage Therapist (RMT), however music therapy has more thoroughly investigated the effects of music in a variety of clinical settings. The information gained from this research can inform RMT’s of the best use of music as an environmental tool. The objective of this case study is to determine if there is added value for a patient to listen to his or her own choice of music in a relaxation massage therapy treatment, rather than music chosen by the researcher.

Physiology and Pathology

Stress can be categorized as distress, which is damaging, or eustress, which is pleasurable (Seyle as cited in Hertling & Kessler, 2006). Hertling & Kessler (2006) define Seyle’s concept of General Adaptation Syndrome (GAS) as “the body’s generalized attempt to defend itself against stressors” (p. 261). The authors describe GAS as being divided into three stages: alarm, resistance, and exhaustion. Physiological responses in the alarm stage include: release of epinephrine and cortisol, increase in heart, blood pressure, and
respiratory rates, sweating, disrupted digestion, and blood is diverted to the skeletal muscles. The stage of resistance causes the body to adapt to the new environment and may cause alterations to the immune system, hypertension, peptic ulcers, and cardiovascular disease. The third stage of General Adaptation is exhaustion, in which “the parasympathetic division of the ANS [Autonomic Nervous System] becomes activated but functions at a low level” (p. 261).

One of the pathologies associated with this heightened ANS activity is anxiety. While there are several categories of anxiety, the most important for the purpose of this case study is called ‘state anxiety.’ Spielberger defines state anxiety as “a reaction to one’s condition or environment. Because state anxiety can be understood as a reaction to one’s condition or environment, the intensity and duration of such a state is determined by an individual’s perception of a situation as threatening” (as cited in Moyer et al, 2004, p.6).

Another view is that emotional stress is a mechanism and it is suggested that emotional reactions create the illusion of a generalized response to stress (Brannon & Feist, 1992). “Hanser’s literature review (1985) found that psychosocial stressors are considered to be major catalysts in the development or progression of hypertension and associated illnesses, gastrointestinal problems, skin disorders, headaches, insomnia, coronary artery disease” (as cited in MTABC, 2016). Given these potentially harmful consequences of increased ANS activity, inquiry into clinical tools that support relaxation becomes clinically relevant.

Music as a Clinical Tool

The mechanism of music inducing relaxation in clinical environments is multifaceted, and has been addressed from a variety of perspectives. In a study by Chlan, Evans, Greenleaf, & Walker (2000), sigmoidoscopy patients in a music group reported less anxiety and discomfort than participants in the control
group. Ghetti (2011), as well as Madson & Silverman (2010) found similar results that music therapy can improve levels of pain, anxiety, relaxation and nausea on the solid organ transplant unit (as cited in Crawford, Hogan and Silverman, 2013). In the study by Burns (1980), patients who listened to their choice of music before surgery had significantly lower heart rates than the control group who had no music. Burns also found that anxiety related to being in an unfamiliar environment could be eased with music, which is more familiar.

Mok, & Wong (2003) suggest that music can affect patients' anxiety by several means:

First, music is seen as a stimulus for active focus or distraction. Music provides a familiar auditory environment and may distract a patient's attention from surgery. Second, music acts as a cue for relaxation response. As relaxation occurs, the patient experiences reduced muscle tension, along with deeper and more even respiration, which reduces anxiety and fear. (p. 401)

The Music Therapy Association of British Colombia website (2016) states that music is effective as it creates “a more efficient relaxation process [due to] enhanced nondominant hemispheric activity, since music listening is a nondominant hemisphere function” (Brown, Chen, and Dworkin, 1989, as cited in MTABC 2016).

There are claims that “music chosen based on research had greater abilities to relax individuals and patients, reduce pain or anxiety, and prevent stress-induced changes in physiological responses than the music chosen by individuals” (Chu-Hui-Lin Chi & Young, 2011, p. 127). In this view, music with the greatest potential for relaxation has a tempo of 60 to 80 beats per minute, to match the adult human heart rate (Johnston & Rohaly-Davis, 1996; McCaffrey & Locsin, 2002). Gaston (1968) also mentions that properties should “include a
constant, harmonious, and smooth structure and lacks strong rhythmic and percussive elements” … [and] “slow stable rhythm, low-frequency tones, orchestral effects, and soothing and relaxing melodies” (as cited in Chu-Hui-Lin Chi & Young, 2011, p. 127). Lingham & Theorell (2009) found that “stimulative music increases energetic feelings but the effects of sedative music are less predictable” (as cited in Chu-Hui-Lin Chi & Young, 2011, p. 132).

Alternatively, Robb (2000) and Crawford, Hogan, & Silverman (2013) state that patient autonomy should be included in clinical music therapy sessions as much as possible. Patrick, Skinner, and Connell (1993) defined autonomy as “the extent to which a person feels free to show behaviors of choice” (as cited in Crawford, Hogan & Silverman, 2013, p. 225). In a musical decision choice, “a patient might make a number of decisions such as the choice of song, tempo, genre, length of intervention, or even type of intervention. Thus, the patient can manipulate the music therapy session, potentially providing a sense of control, mastery, and autonomy” (Crawford, Hogan & Silverman, 2013, p. 225).

Aligned with these concepts surrounding the value of patient autonomy and involvement, Taylor (1973) discovered that “the participant’s reactions usually did not agree with the categorization of the music. Taylor cautions that music should be classified not only by its musical properties but also by the reactions of the listener” (as cited in Statton and Zalanowski, 1984, p. 186), since all subjects do not respond identically to a musical selection. Stratton and Zalanowski (1984) found that “no single type of music was most effective in aiding relaxation, and no significant differences were found between soothing and stimulating music. Subjects varied in the degree of relaxation they experienced, and the single factor most closely related to relaxation was degree of liking for the music” (p. 184). Mitchell and MacDonald (2006) found that subjects listening to chosen music tolerated pain stimuli longer than comparison. The authors suggested that an
individual's choice of music was important for pain relief. This conclusion was supported by Mok & Wong (2003) who found a large decrease in pretest to post test anxiety, blood pressure and heart rate in patients undergoing minor surgery with local anesthesia and suggested that music chosen and favored by patients has the greatest impact on helping patients relax. Burns found that “the most beneficial responses for patients occur when music is familiar, desirable, and meaningful to them” (as cited in Mok & Wong, 2003, p. 401).

Davis and Haut (1989) agree that listening to preferred relaxing music reduces anxiety and increases relaxation significantly. They additionally indicate that individual preference, familiarity, cultural background, past experiences, and perception of musical elements (structure, tempo, and dynamics) were important variables to individual’s music selections for relaxing. Personal preference needs to be considered in selecting music pieces for reducing anxiety and increasing relaxation. (as cited in Chu-Hui-Lin Chi & Young, 2011, p. 132)

In summary, research presents two conflicting approaches in music selection when used in a clinical setting for patient relaxation. The question then arises: what is the influence of music chosen by the practitioner versus music chosen by the patient in achieving relaxation?

Massage as a clinical tool

In a meta-analysis of MT research, Moyer, Rounds and Hannum (2004) found MT the most effective in reducing state anxiety, blood pressure and heart rate. The authors define MT as “the manual manipulation of soft tissue intended to promote health and well being” (p.4). The authors exclude many modalities RMT’s
commonly use such as hydrotherapy, passive range of motion and progressive relaxation, which likens the findings to the general Swedish massage used in this study.

There is a wide variety of research stating that MT can impact the ANS. Sarafino (2002) found MT effective for shifting a sympathetic state into a parasympathetic response. The parasympathetic response is “associated with decreased cardiovascular activity, a decrease in stress hormones, and feelings of calmness and wellbeing” (Sarafino, 2002, p. 40). In more specific detail, MT can lead to a reduction of both blood pressure and heart rate, which is further consistent with a parasympathetic response of the ANS (Hertling and Kessler, 2006). “Melzack and Wall (1965) theorized that the experience of pain could be reduced by competing stimuli such as pressure or cold, because these stimuli travel along faster nervous system pathways than pain. In this way MT performed with sufficient pressure could create a stimulus that interferes with the transmission of the pain stimuli to the brain” (as cited in Moyer et al., 2004, p.4).

Two studies link MT with increased levels of serotonin (Field, Grizzle, Scafidi, & Schanberg, 1996; Ironson et al., 1996), which “may inhibit the transmission of noxious nerve signals to the brain”(Field, 1998, p.1274). Others have suggested that manipulations such as rubbing, or applying pressure, may stimulate a release of endorphins into the bloodstream (Andersson & Lundeberg, 1995; Oumeish, 1998) (as cited in Moyer et al., 2004, p.5).

“The pressure applied during MT may stimulate vagal activity (Field, 1998, pp.1273, 126-1277), which in turn leads to a reduction of stress hormones and physiological arousal, and a subsequent parasympathetic response of the ANS” (as cited in Moyer et al., 2004, p. 5). While pain does not have to be present in stress, it may be one potential stressor contributing to GAS and is commonly seen in clinical settings.
In summary, there is research evidence of the effectiveness of MT in clinical relaxation. As seen in the previous section, music is also effective in aiding relaxation in clinical settings. The hypothesis is that relaxation could be enhanced in a MT treatment with effective selection and choice of music. There are research gaps investigating the use of music as an external environmental tool in MT relaxation treatments, and more specifically, the selection method and choice of this music. This case study will test the hypothesis by comparing the influence of patient-selected and researcher-chosen music in relaxation MT treatments.

Methods

This case study consisted of six separate MT treatments twice a week for three weeks in January 2016. Each treatment consisted of thirty minutes of hands on massage time using general Swedish relaxation techniques. This timing choice was based on research indicating that a minimum of twenty to thirty minutes is required for music therapy sessions to achieve optimal therapeutic results (Chu-Hui-Lin Chi & Young, 2011). A similar timing has also been shown to have MT relaxation effects (Rattray & Ludwig, 2000, p.13).

The participating patient selection was based on patient treatment goals and availability. The treatment process was explained, and both verbal and written consent were obtained from the patient before the therapy sessions commenced. All of the treatments took place in a private room within an RMT supervised clinic.

All treatments began with a pretest interview and assessment (see Appendix A). As a primary goal of inducing relaxation is the reduction of sympathetic nervous system activity, this case study relied on known physiological ANS indicators. The primary assessments were: respiratory rate (number of breaths/minute=RR); Pulse Rate (taken at the radial pulse for 1 minute= PR); and blood pressure taken via sphygmomanometer (BP). These assessment methods were drawn from previous research as physiological
indicators of relaxation in both MT and music therapy research (Mok & Wong, 2003; Moyer et al. 2004). The difference between pre and post-test scores of these measures were used to evaluate the influence of both music variables. Three treatments were performed of researcher-chosen music, and three treatments were performed of patient-chosen music. This design of multiple treatments accommodates for day-to-day variations in patient stress levels. Although it would be fascinating to compare and track the changes throughout treatment with a heart rate monitor to see “play by play” reactions, it was not chosen for this study because Field et al (1998) observed that “bodily cortisol levels are indicative of responses occurring 20mins prior to sampling” (p.233). If music were shuffled between researcher and patient chosen music on one playlist during each treatment, it would make accurate post treatment analysis difficult.

In MT, “generally, any technique applied in a slow, rhythmical and repetitive manner, will evoke a relaxation response and decrease sympathetic nervous system firing. This is facilitated if the techniques are applied in a predictable pattern, at an even rate” (Rattray & Ludwig, 2000. p. 20). General Swedish massage techniques used in this study include compressions, stroking, and kneading. These techniques were chosen for their sedative qualities, practicality for each treatment area, and for their common use in MT. Compressions were used as introductory and ending contact with equal pressure to the surface of the palm and fingers. Stroking used equal pressure through the surface of the hand and fingers in a unidirectional stroke, while kneading strokes were short, rhythmical, circular movements with the pressure peaking in the middle of the technique (Rattray and Ludwig, 2000). The techniques moved from: general to specific to general, superficial to deep to superficial, proximal to distal to proximal, and peripheral to central to peripheral. This basic level of massage provides repeatable techniques that can be used for relaxation, and also to serve as a control for the music choice variable.
The patient began in a prone position for the first half of the treatment. Compressions, fingertip and palmar stroking, and fingertip kneading were used on the upper back with focus on primary areas of tension such as the upper trapezius, and cervical and thoracic erector spinae group. The last half of treatment was in supine. Fingertip stroking was employed to the lateral and posterior neck, followed by fingertip kneading to temporalis and light stroking to masseter. The same procedure and techniques were performed in all the treatments. The treatment was followed by post-test measurements of respiratory rate, pulse rate, and blood pressure to mark any physiological changes.

In treatments 1, 3, & 5, the patient wore noise-cancelling headphones with a pre-selected playlist of music chosen by the researcher. The music selections were based on the musical characteristics consistent with sedation. Song choices reflected music chosen in research by Grocke & Wilgram (2007, p. 45, 105-112) and Stratton & Zalanowski (1984), which included primarily soothing classical and Celtic music selections with a blend of both voiced and non-voiced artists (see sample in Appendix B). In treatments 2, 4, & 6, the patient was asked to create a relaxing playlist of her own music choices before arrival (see sample in Appendix C). The patient-choice and researcher-choice music was alternated by treatment session to avoid bias to the later set of treatments as patient and therapist comfort improved.

In both patient-chosen and researcher-chosen music treatments, once music and volume were selected, the patient activated one IPod playlist on the shuffle setting to avoid resetting and distractions that could increase arousal. The headphone cords were adjusted once in each treatment position so they would not interfere with the massage therapist’s hand positions.
The patient selected was a 26-year-old active female in search of a general relaxation treatment to the upper back, neck and face. She has a history of both non-Hodgkin’s lymphoma and a brain tumor, which was successfully treated with chemotherapy and radiation. The patient has been medically cleared of these conditions and has no sensitivity or pain around the previous radiation sites. The patient takes daily anti-seizure medication (Dilantin) from a previous seizure. The patient plays ultimate twice a week and recently began a callisthenic interval-training program also twice a week. She has regular muscle tightness and commonly complains of tension and soreness to the upper trapezius areas bilaterally. A mild upper cross presentation is observed, with both shoulders slightly elevated, and bilateral scapular protraction. On palpation, she presented with hypertoned upper trapezius, levator scapulae, sternocleidomastoid, and scalene muscles bilaterally. Trigger points were discovered via cross fiber palpation in upper trapezius and levator scapulae on different occasions.

Movement impairments were screened via functional TMJ, C-spine, and T-spine functional tests and with an initial joint exam of the cervical spine, as this was the primary area of treatment. She presented with bilateral tightness down the posterolateral neck looking down to each axilla, mild tightness in her thoracic spine with reaching, slightly decreased ranges of motion in Apley’s inferior on both sides, and a mild left C-curve in her TMJ in the three knuckle test. In each treatment, the relevant areas were functionally screened, and presented consistently throughout the duration of the study. The patient presented with no neurological signs or symptoms to the relevant areas, however, the left arm presented with exaggerated reflexes when tested with C5, C6, and C7 reflex tests. While movements left arm movements had acceptable strength, the patient reported certain motor patterns are still uncoordinated in some fine motor movements of her left hand since the brain tumor. The patient has had tension headaches before, but has not experienced any recently. Lateral flexion and rotation Alar Ligament stress tests, maximum cervical compression, and VAT were all performed
to ensure patient safety with neck work. Specific joint play presented with reduced translation at C3 left to right (See Appendix A) for complete assessment and case SOAP notes).

Results

Table 1 represents measurements from treatments with researcher-chosen music. Systolic blood pressure reduced in all 3 treatments, and diastolic blood pressure reduced in only the first treatment. Measurement changes averaged over 3 treatments show a reduction of both systolic and diastolic blood pressure by 4.67/3 mmHg. Respiratory rate reduced in all three treatments for an average change of 4 breaths per minute. Pulse rate increased in the first treatment by 4 beats per minute, but reduced in the final two sessions for an average change of 2 beats per minute.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Researcher-chosen music treatments (Tx) #1, 3, 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment # (Tx)</th>
<th>Test time (pre or post)</th>
<th>Blood pressure (BP)</th>
<th>Respiratory rate (RR)</th>
<th>Pulse rate (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx #1</td>
<td>Pre-test</td>
<td>116/85</td>
<td>21</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>112/76</td>
<td>18</td>
<td>76</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-4/-9</td>
<td>-3</td>
<td>+4</td>
</tr>
<tr>
<td>Tx #3</td>
<td>Pre-test</td>
<td>114/74</td>
<td>28</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>108/74</td>
<td>25</td>
<td>64</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-6/0</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>Tx #5</td>
<td>Pre-test</td>
<td>108/72</td>
<td>21</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>104/72</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-4/0</td>
<td>-6</td>
<td>-6</td>
</tr>
<tr>
<td>Average difference for 3 treatments</td>
<td></td>
<td>-4.67/-3</td>
<td>-4</td>
<td>-2</td>
</tr>
</tbody>
</table>

Table 1: *Differences between pre and post test measurements is reflected by: Reduction: – Increase: +
Table 2 represents measurements from treatments with patient-selected music. This data reflects that blood pressure, respiratory rate, and pulse rate consistently reduced in all 3 treatments. Blood pressure decreased by an average of 4.67/2 mmHg; respiratory rate decreased by an average of 9 breaths per minute, and pulse rate by an average of 12 beats per minute.

<table>
<thead>
<tr>
<th>Treatment # (Tx)</th>
<th>Test time (pre or post)</th>
<th>Blood pressure (BP)</th>
<th>Respiratory rate (RR)</th>
<th>Pulse rate (PR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx #2</td>
<td>Pre-test</td>
<td>116/76</td>
<td>27</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>112/74</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-4/-2</td>
<td>-12</td>
<td>-8</td>
</tr>
<tr>
<td>Tx #4</td>
<td>Pre-test</td>
<td>110/72</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>104/70</td>
<td>17</td>
<td>58</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-6/-2</td>
<td>-7</td>
<td>-12</td>
</tr>
<tr>
<td>Tx#6</td>
<td>Pre-test</td>
<td>106/70</td>
<td>24</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>102/68</td>
<td>16</td>
<td>62</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>-4/-2</td>
<td>-8</td>
<td>-16</td>
</tr>
<tr>
<td>Average difference for 3 treatments</td>
<td></td>
<td>-4.67/-2</td>
<td>-9</td>
<td>-12</td>
</tr>
</tbody>
</table>

* Differences between pre and post test measurements is reflected by:
 Reduction: –
 Increase: +

A comparison of the averaged changes of each assessment measurement between both music selection treatments is shown in Figure 1 below. Average systolic blood pressure remained the same while diastolic blood pressure was slightly lower in patient chosen music treatments. Average respiratory rate was markedly
lower by 5 breaths per minute in patient selected music treatments. Pulse rate represented the most significant reduction with an average change of 10 beats per minute in the patient selected music treatments.

Figure 1. Pre versus Post Test Averages.

Discussion

Relaxation responses were seen in 15/18 measurements, with patient-chosen music showing the most consistency. Interestingly, there is an exaggerated difference in the respiratory rate and pulse rate within the patient-chosen music treatments. The role the patient’s medications may have influenced the outcome measures. According to the U.S. FDA (2013) safety information for Dilantin, one of the potential side effects is hypotension, which could have potentially impacted the results. This may explain why the respiratory rate and pulse rate seemed to react more drastically than blood pressure, but this would require further investigation.
The data of this case study supports the value of patient-chosen music in relaxation treatments. While some reductions could be attributed to spending time in a rest position or from the massage, these factors are consistent in all treatments. Therefore, the difference between patient-selected and researcher-selected music appears to be a relevant variable. As mentioned earlier, state anxiety is highly dependent on how the patient perceives their environment, and patient-chosen music may be a familiar medium that could alter that perception and reflect in relaxation outcomes. The patient’s music choices could be examined in collaboration with a music therapist to determine if the music coincidentally fit the research recommended criteria, but with an added familiarity component.

Limitations of this study are that it is a case study with a small sample size and results cannot be generalized. Second, access to a wide variety of measurement tools was limited, which created technological limitations that narrowed the data collection methods. Other tests such as blood, urine, or salivary cortisol levels and finger temperature would add more data. Third, an extended time frame with more treatments would also enrich the data.

This case study is strengthened by the wide body of research available in each discipline, and that it highlights individuality in treatment responses. The quantitative nature of the assessment tools reflects exact findings, and provides repeatable testing procedures. Even though the population power of this study is low, triangulation of measurement methods improves validity.

The results of this case study support the value in offering patients their preferred choices of music during MT treatments with relaxation goals. Individual treatment rooms with independent music control may facilitate this option. Alternatively, the patient’s personal music device could be used and may also serve to
remove the therapist from situations where the music is unintentionally found to be offensive or anxiety producing for the patient.

The results of this study present opportunities for future research surrounding the application of music choice for different MT treatment goals (e.g. stimulatory treatments, pain control, or pathologies). While the amount of research connecting MT and music is low, many of the concepts of each have already been explored, which enables further research endeavors to align and test their integration within new contexts.

Conclusion

There is common use of music in MT relaxation treatments, but there is also a gap in research that examines the selection and choices of music as an external environmental modality in this setting. This study conducted an inquiry into this area and presents evidence that there is value in integrating patient-chosen music in relaxation MT treatments. These findings support existing research that states combining music into clinical treatments is effective and that inclusion of patient-chosen music can increase the relaxation effect. This study adds to the existing body of research by linking expertise and exploring the potential benefits and opportunities that this may offer both MT patients and the MT profession.
References

in the ICU. *Critical Care Nursing Quarterly, 18*(4), 54–60.

Appendices

Appendix A: Pre test interview and assessment forms (7 pages)
PATIENT INTAKE FORM

Please complete this form in order to assist us in becoming familiar with your health history, and to ensure that massage therapy services provided are not contraindicated for you.

1. Are you currently receiving treatment from any of the following healthcare practitioners?
 - Chiropractor
 - Massage Therapist
 - Medical Doctor
 - Physiotherapist
 - Other

2. Are you over the age of 16? Yes ☒ No ☐
 Please note: Massage therapy cannot be given if you are under the age of 16 years without the consent of a parent or legal guardian.

3. Are you presently involved in a WCB or ICBC litigation / claim involving an injury? Yes ☐ No ☒
 Please note: Massage therapy cannot be given at WCCMT if you are on an ICBC/WCB claim.

4. Have you had a bad/negative reaction to heat or cold? Yes ☐ No ☒

5. How did you hear about the WCCMT student clinic?
 - Friend
 - Student
 - Co-worker
 - Family
 - Website
 - Advertising
 - Other

Please check ☒ if any of the following apply to you:

- General
 - Allergies
 - Depression/Axiety
 - Dizziness
 - Dizziness
 - Fatigue
 - Headaches
 - Loss of sleep
 - Weight loss/gain
 - Other

- Skin
 - Bruise easily
 - Dry / Oily
 - Eczema
 - Hives / Rash
 - Psoriasis
 - Other

- Cardiovascular
 - Anemia
 - Arteriosclerosis
 - Cold feet
 - Edema
 - Heart Disease
 - High/Low blood pressure
 - Pace Maker
 - Poor Circulation
 - Rapid/Irregular pulse
 - Rheumatic fever
 - Stroke
 - Swelling of ankles
 - Varicose veins
 - Other

- Women
 - Menopause
 - Pregnant
 - Yes ☒ No ☐
 - If yes # months: _______
 - Breast conditions

- Nervous System
 - Epilepsy
 - Multiple Sclerosis
 - Numbness / Tingling
 - Other

- Gastrointestinal
 - Abdominal Pain
 - Appendicitis
 - Constipation
 - Diarrhea
 - Heart Burn
 - IBS/Chrohn’s / Colitis

- Respiratory
 - Asthma
 - Bronchitis
 - Chest Pain
 - Chronic Cough
 - Difficulty breathing
 - Emphysema
 - Pneumonia
 - Other

- Systemic Disorders
 - Cancer
 - Fibromyalgia
 - HIV / AIDS
 - Osteoporosis
 - Post Polio Syndrome
 - Thyroid disease
 - Other

Patient information is considered strictly confidential under the guidelines of the Personal Information Protection and Electronic Documents Act (PIPED)

Please turn over.
MUSIC IN RELAXATION MASSAGE THERAPY TREATMENTS

PATIENT INTAKE FORM

Give a brief detailed description of the problem you are currently experiencing: tight IT band (both sides)

How long have you had this condition? Since Oct 2015

Is it getting / worse / better? N/A

Does it bother you (check appropriate box): work, sleep, other:

What seemed to be the initial cause:
playing consecutive games in a tournament

Are you currently satisfied with your:
- Physical health & fitness? Yes No
- Mental and emotional happiness? Yes No
- Diet? Yes No
- Ability to relax? Yes No

Do you exercise regularly? Yes No

How is most of your day spent? Standing Sitting Other:

When was your last physical exam? Sept. 2015

Please describe your stress level: Normal

Past Health History:
- Have you ever:
 - Been hospitalized (surgeries etc.) Yes No
 - Suffered from depression/anxiety Yes No
 - Had any broken bones Yes No
 - Had any strains or sprains Yes No
 - Used orthotics Yes No
 - Had pins, plates, screws, rods, prosthesis, breast implants Yes No

Please list any medications you are currently taking and why: Dilantin - antiseizure meds

Alcohol, tobacco, and recreational drug use: Alcohol: ~1 drink/week

Consent and Release:
I acknowledge that the above information is accurate and true to the best of my knowledge. I fully understand that this is a teaching massage clinic and accordingly, a clinic instructor may be present during any aspect of my treatment. Our clinic makes every effort to ensure that your experience here is safe, effective and enjoyable.

The West Coast College of Massage Therapy Inc., its employees, servants and agents (the “College”), do not accept liability for any claim as to the method or manner of treatment given, or any complaint related to supposed conditions arising from therapy. In good and valuable consideration, the undersigned does hereby release and forever discharge the College, its successors and assigns, from any other legal obligations and compensation of whatsoever kind and howsoever arising from or out of any treatment which will be provided to the undersigned.

Please sign below to show that you fully understand and agree to the above disclaimer and stated conditions of receiving treatment at the West Coast College of Massage Therapy Clinic.

Signature: [Redacted] Date: Jan 12, 2016

Patient information is considered strictly confidential under the guidelines of the Personal Information Protection and Electronic Documents Act (PIPED)

Instructor signature: [Redacted]
Patient History Term 5

Occupation: Youth Worker
Intern: Jeff White
Date: Jan 12, 2016
Age: 26
Class: 1A
Term: 5

CC: Relaxation
1st back/neck. Bl.
Noript suspected posture New Exercise regime

Weight, Height, Blood Pressure

Chronic medical condition - chronic back/neck pain

Medications - General

Regular exercise twice per week, worked twice per week.

Past medical history - played football 2 years ago

Physical examination:

Med Dr. checkup 1 week ago

Tumor biopsy recent bone scan. Cancer stable last known 2011 Lymphoma chemotherapy.

Medication:

Meds Dilantin - 1 x daily 2011

Pt. Goal - relaxation + upper back, neck, face & time

Clinic Instructor:

Patient information is considered strictly confidential under the guidelines of the Personal Information Protection and Electronic Documents Act (PIPED)
MUSIC IN RELAXATION MASSAGE THERAPY TREATMENTS

Initial Scan Exam (ISE)

Palpation summary (4 T's & location)

Functional tests

<table>
<thead>
<tr>
<th>Region</th>
<th>Functional Test</th>
<th>Findings (pain/ROM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-SPN</td>
<td>4-Corner Look</td>
<td>↑ UPPR. WAY - STRETCH ↑ LSO. INDICATED.</td>
</tr>
<tr>
<td>GH</td>
<td>APLEUS</td>
<td>R=WNL L=SIL R=SIL.</td>
</tr>
<tr>
<td>TSP</td>
<td>4-Corner reach</td>
<td>↑0, S1 θ w rot. component.</td>
</tr>
<tr>
<td>TM3</td>
<td>3-Knuckle</td>
<td>FULL RANGE, 50° CAME.</td>
</tr>
</tbody>
</table>

Regional Functional Tests

- Shoulder (Apley’s superior/lateral)
- Hip (squat & rise)
- Knee (squat & rise)
- Ankle (dorsiflex & ankle walk)
- C-spine (shoulder check, up/down)
- C-spine (rhombs/cervical)
- C-spine (neck & neck, touch nose)
Appendix B: Sample of researcher-chosen music playlist:

Haydn's *String Quartet*, second movement
Mozart's *Symphony #40*, second movement
Mozart's *Symphony #41*, second movement.

Enya: Watermark,
Enya: On the Shore
Enya: Ms Clare Remembers
Enya: Evening Falls
Appendix C: Sample of patient-chosen music playlist:

Jolene - Ray LaMontagne

The Earth Prelude - Ludovico Einaudi

Fly - Ludovico Einaudi

Stacks - Bon Iver

Trouble - Ray LaMontagne

I Giorni - Ludovico Einaudi

Holocene - Bon Iver

Nuvole Bianche - Ludovico Einaudi

Una Mattina - Ludovico Einaudi

Georgia - Vance Joy

Fairytale - Ludovico Einaudi

I Can't Make You Love Me - Nick of Time - Bon Iver

Promise - Ben Howard

Heartbeats - Jose Gonzalez

In a Notebook - Goldmund